Economics and the Defined Benefit pension problem

Professor Andrew Clare September 2009

The future of Defined Benefit pension provision

- According to the latest Association of Consulting Actuaries survey of pension trends amongst employers:
 - 69% of the defined benefit (DB) schemes surveyed are closed to new entrants but remain open to new accruals, while 18% are closed to both new entrants and to future accrual.
- The survey also found that:
 - 34% of DB schemes are under active review
 - 39% of the employers surveyed are considering changes to future accrual
 - 35% are considering moving to a career average revalued earnings formula
 - 22% are considering moving to defined contribution (DC)
- DB pension provision will eventually be a thing of the past

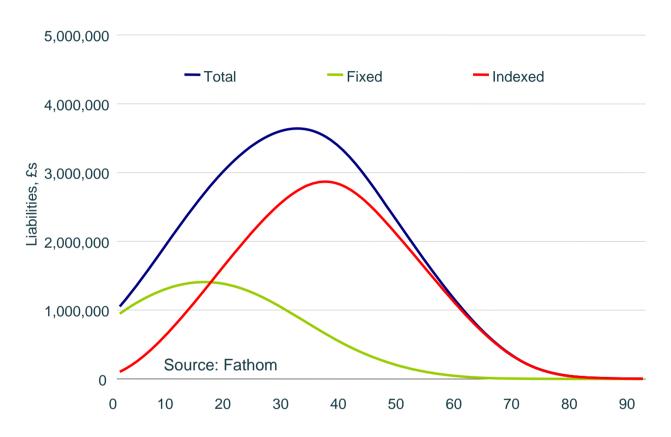
The defined benefit problem*

^{*}See Brigden, A., Clare A, R. Driver, M. Selvaggi (2009), 'The Road To Buyout', Pensions, p.90-110

A typical scheme

- DB scheme closed to new entrants but open to future accrual
- Key parameters include:
 - scheme opened in 1970 and closed in 2003
 - scheme membership representative of UK labour force
 - pay scales relative to national average 1.0
 - rate at which pension benefits accrue 1/80 of "final" salary per year of service
 - years of service over which "final" salary is averaged 3 years
 - post 1997 benefits inflation-linked
 - men retire at 65; women at 60
 - mortality: GAD medium cohort (2004)

Scheme funding characteristics


- Key parameters include:
 - employer and employees contribute 6%pa of gross pensionable salary
 - additional employer contributions possible/probable
 - asset allocation, a typical allocation being:
 - UK equities 50%
 - Gilts 10%
 - Index-linked gilts 10%
 - £ corps (BBB) 30%

Make up of membership

- Deferred (62%) and active (12%) members represent the bulk of pension fund liabilities
- This is typical of many schemes

Fixed v inflation-linked cash flows

- Pension promise prior to 1997 fixed, after 1997 LPI(0,5)
- Significant inflation exposure in this scheme

The DB problem

- To invest scheme assets such that it maximises the likelihood of providing the promised benefits
- Strategy should not imperil the scheme sponsor
- With the benefit of hindsight we can now see that the DB promises were overly generous.
- Who would start a company today and set up a 1/80th DB scheme?

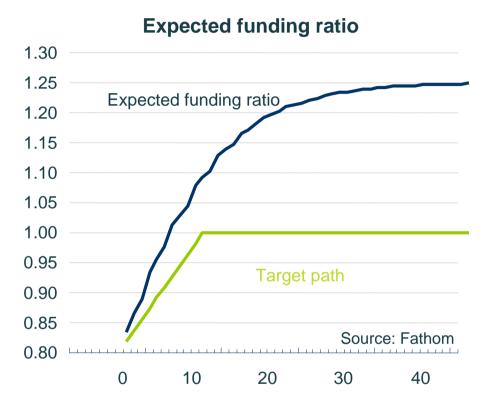
The risks inherent in liabilities

- The pension promise:
 - payment of pension until death
 - a fixed pension promise: like issuing a conventional bond
 - an inflation-linked pension promise: like issuing an indexlinked bond (RPI, LPI(0,5), LPI (0,3))
- The scheme is in the position of any bond issuer but:
 - committed to substantial index-linked payments
 - uncertain about when the "bond" will mature

The risks inherent in scheme assets

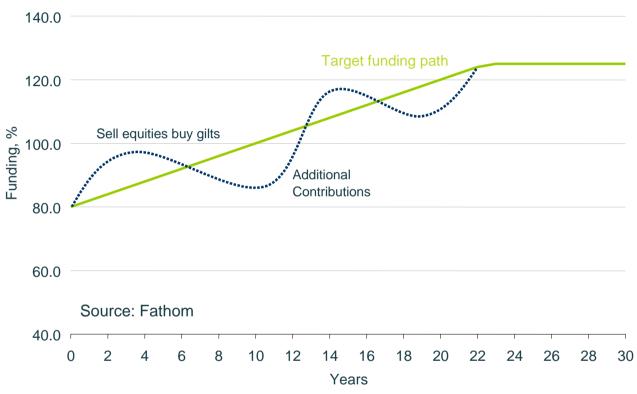
- Asset allocation:
 - what return will the assets produce ... over the next few decades?
 - how volatile will these returns be ?
 - how correlated will the returns be ?
 - should asset allocation be static, or dynamic?

The risks around the covenant

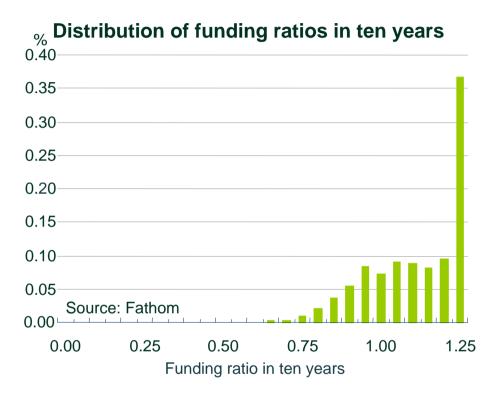

- How committed is the sponsor to the scheme?
 - what sort of business are they in?
 - can they be relied upon to top up the scheme
 - what is their leverage/credit rating?

Simulating the problem

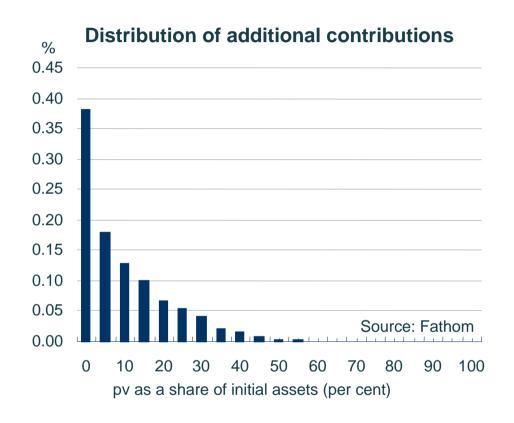
What are some of the economic ingredients?


- Longevity assumptions
- Growth environment (productivity)
- Inflation environment
- Interest rate environment
- Asset class returns, volatilities and correlations
- Credit quality of scheme sponsor
- What sort of analysis are we trying to undertake ...

The "expected" outcome

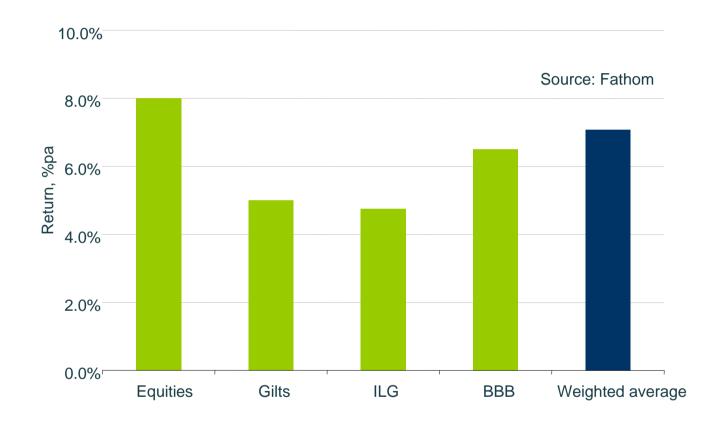

- Assume the scheme begins life with a 20% deficit
- If expectations are fulfilled the scheme will be more than fully funded within ten years, though it only just gets to a buy-out level

Contribution/asset allocation strategy


- Every three years, if the scheme is:
 - below the path, we ask them to inject 50% of the shortfall into the scheme;
 - 1% above, the scheme switches 2% from equities into gilts

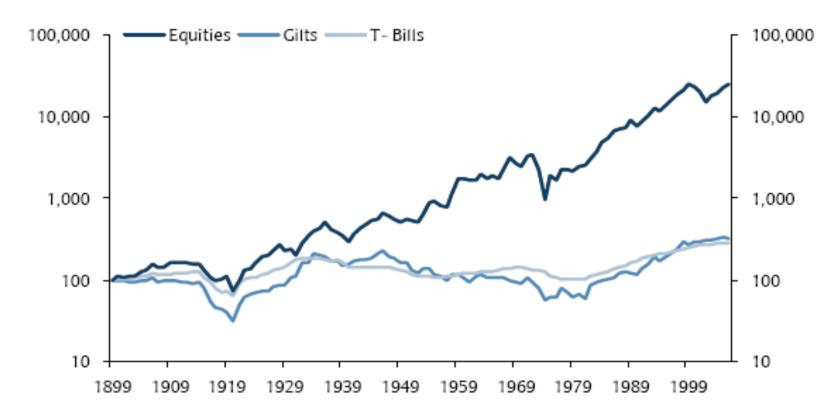
Distribution of funding after ten years

- Having rolled the dice 2,000 times this is the distribution of the funding ratio in ten year's time – the Pension Regulator's preferred recovery plan length
- A 5% chance that the scheme will have funding of less than 80%


Distribution of additional contributions

- Burden on the scheme sponsor can be high in some cases
- 5% chance of having to top-up scheme by more than 30%.

What influences the inputs?


Expected return on assets

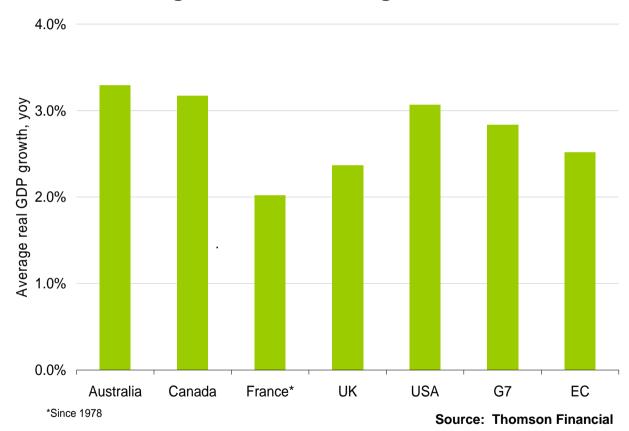
These estimates are fairly close to the industry standard assumptions

A historic perspective on expected returns

Figure 86: Barclays total return indices in real terms with gross income reinvested

Source: Barclays Capital.

Long-term expected return components

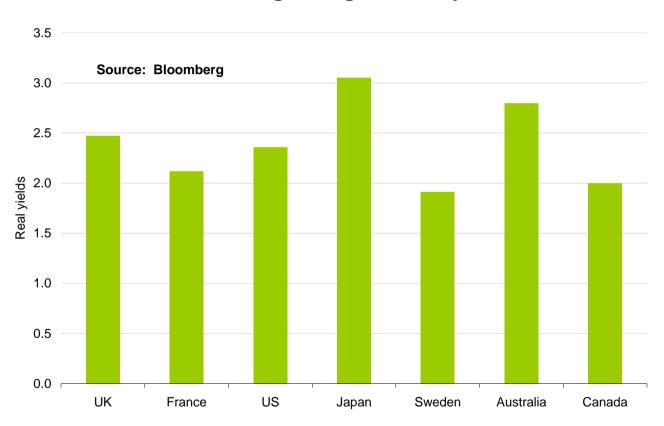

- There are three components of expected return on all assets
 - Ex ante real return
 - Compensation for future inflation
 - Compensation for risk
- Let's begin by determining the "neutral rate", which comprises the first two components

The ex ante real return

- In a world with no inflation and no risk, investors would still require a return from their investments, but how much?
- It would depend upon the 'opportunity cost' of foregone consumption
- It's closely related to the potential growth rate of the real economy

Average real GDP growth since 1970

Average annual, real GDP growth since 1970

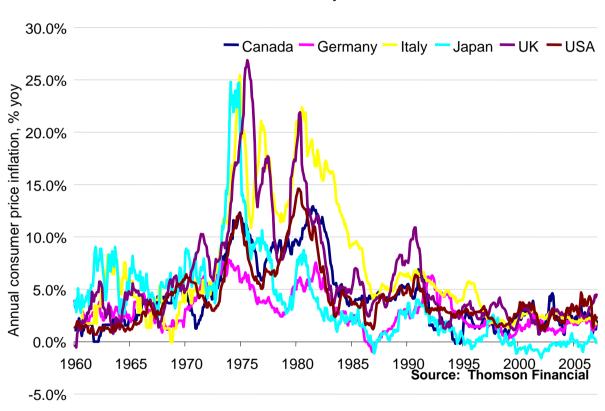


The ex ante real return

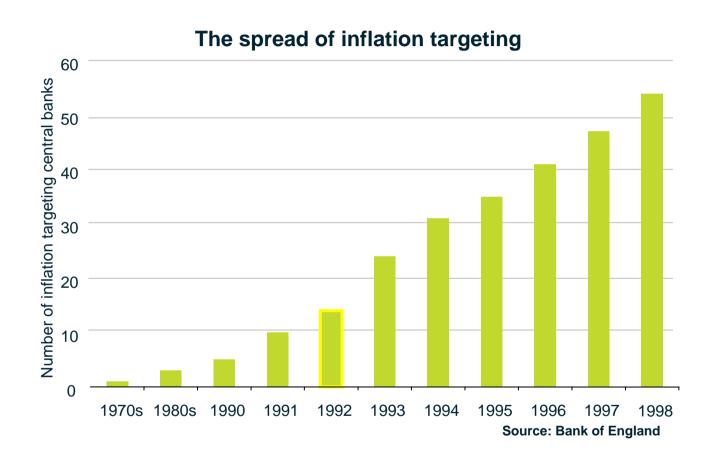
- Despite many new inventions railways, telephones, microchip, the internet etc - economic growth has actually been remarkably stable
- Perhaps then historic GDP growth will be a good guide to long term future real GDP growth
- On the other hand, is the credit crunch a paradigm shifting event ... the end of capitalism as we know it?
- Such estimates probably a good proxy for the long term ex ante real return
- Yields on long-dated index-linked gilt market can give us a clue to what the market thinks about trend growth

Yields on long-dated indexlinked bonds

Real, long term govt bond yields



The inflation environment

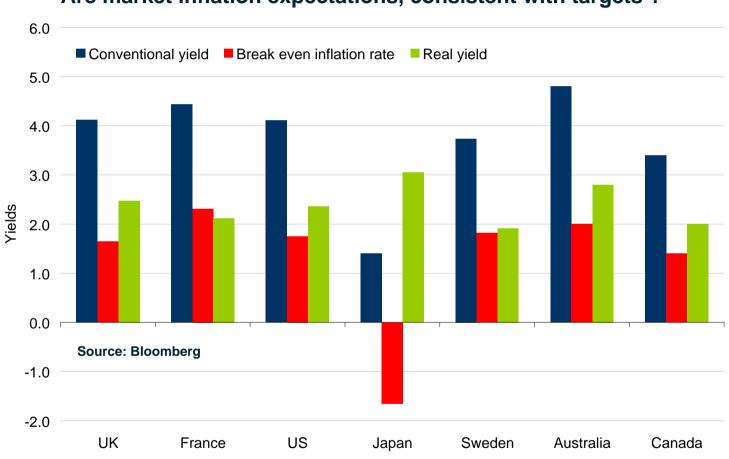

- How do we forecast inflation?
- Are historic trends a good guide?

The recent low inflation environment

Inflation in a selection of developed economies since 1960

Inflation targeting

Inflation targeting


Inflation targets in a selection of developed economies

Country/region	Target/inflation goal
Euro-area	ECB aims to keep CPI inflation below ceiling of 2.0%
UK	MPC aims to keep CPI inflation within ±1.0% of 2.0% target
Australia	Australia's FRB target inflation between 2.0% to 3.0%
Canada	Bank of Canada aims to keep CPI inflation within ±1.0% of 2.0% target
New Zealand	Reserve Bank of New Zealand aims to keep CPI between 1.0% to 3.0%
Sweden	Riksbank aims to keep CPI inflation within ±1.0% of 2.0% target
USA	Indications from Fed officials that 2.0% for core PCE inflation is "preferred"

Source: Fathom

Market "inflation expectations"

Are market inflation expectations, consistent with targets?

Compensation for future inflation

- In the UK it seemed reasonable in the past to assume inflation of around 2.0% (CPI), that is, 2.5% (RPI). But what about now?
- In Europe 2.0%
- In USA Bernanke known to be in favour of inflation targeting.
- Will governments be tempted to inflate this debt away in the future?

Putting it all together

- Putting together an estimate of trend growth and expected inflation gives a neutral policy rate for an economy
- Neutral rate will be close to expected return on cash
- For the UK prior to the credit crunch it might have been:
 - 2.25% for growth
 - 2.5% (RPI) for inflation
 - Giving a grand total of 4.75%
- This gives the mean outlook for the level of interest rates, and inflation
- But what about now? Has the credit crunch changed any of this?

The 'neutral rate'

- Policy rates will cycle around their 'neutral rates'
- The return on cash will be closely related
- These neutral rates can change themselves if:
 - trend growth changes (productivity improvements, labour migration)
 - monetary policy regime changes
- The return on cash is the basis for future expected returns on all assets
- The risk premium is what distinguishes them

The "inflation risk premium"

- Biggest risk in holding conventional, govt bonds is inflation.
- In past governments have arguably "inflated away" their debts –
 they may be tempted to do this again
- Investors demand an additional return, mainly because future inflation is uncertain (other risks too)
- It will depend upon the:
 - the monetary policy framework and
 - the credibility of monetary authorities

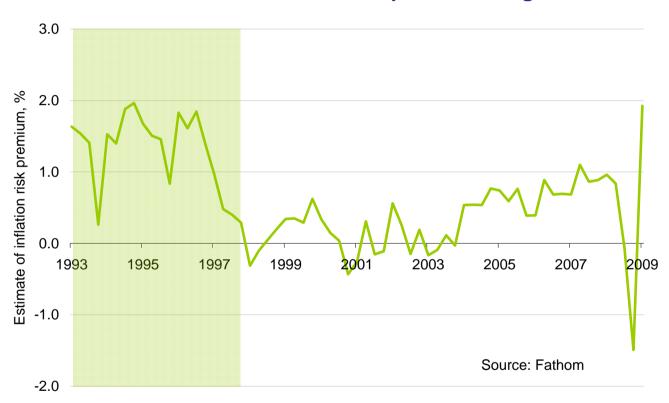
Calculating an "inflation risk premium"

Yield on Conventional government bond (Gilt)

Minus

Yield on index-linked government bond (ILG)

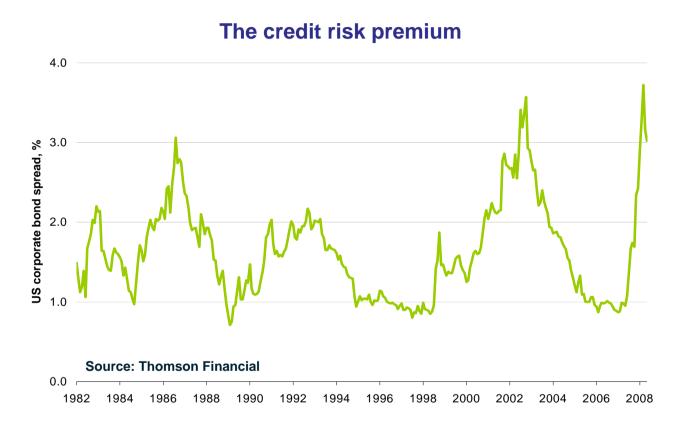
Minus


Estimate of expected inflation (survey based)

Equals

Measure of inflation risk premium

The UK's inflation risk premium


Measure of the inflation risk premium for gilts

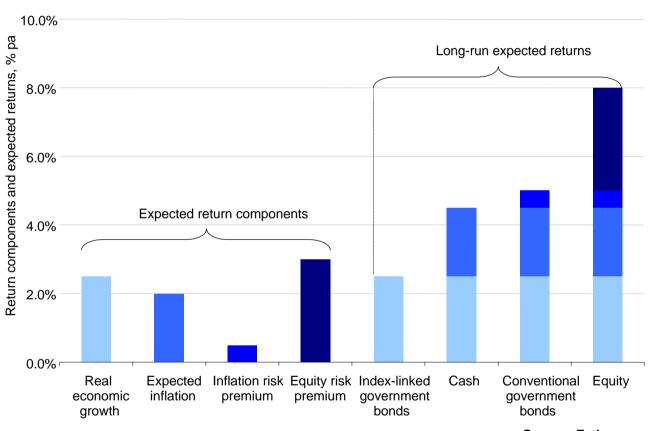
The credit risk premium

- Credit premium additional return over equivalent govt bond to compensate for credit risk
- Varies according to the type of firm (AAA, AA, A, BBB etc)
- Outside US not much history to guide us as to likely future credit risk premium
- It's also very volatile ...

The credit risk premium

The equity risk premium

- ERP is the additional return required over long-dated government bond for bearing equity risk
- But what is equity risk?
 - profitability
 - ongoing viability of company


UK's equity risk premium

A measure of the UK's equity risk premium

Putting it all together

Example of "building block approach" to forecasting long-run asset class returns

Summary

- An assessment of the economic and policy environment will help to inform views about:
 - wage/salary growth
 - the discount rate applied to liabilities
 - the likely returns on broad asset classes
 - the likely volatility of returns and return correlations on broad asset classes
 - and possibly longevity trends too